JOURNAL OF APPROXIMATION THEORY 20, 284-287 (1977)

Existence of Transformed Rational Complex Chebyshev Approximations

CHARLES B. DUNHAM

Computer Science Department, University of Western Ontario, London, Ontario, Canada

Communicated by Philip J. Davis

Received November 17, 1975

Let X be a compact topological space. Let C(X) be the space of continuous complex functions on X. For g a complex function on X define

$$g := \sup\{, g(x)\} : x \in X\}.$$

Let $\{\phi_1, ..., \phi_n\}, \{\psi_1, ..., \psi_m\}$ be linearly independent subsets of C(X) and define

$$R(A, x) = P(A, x)/Q(A, x) = \sum_{k=1}^{n} a_k \phi_k(x) / \sum_{k=1}^{m} a_{n+k} \psi_k(x).$$

Let σ be a continuous mapping of the complex plane into the extended complex plane and define

$$F(A, x) = \sigma(R(A, x)).$$

Let *P* be a subset of complex (n - m)-space. The approximation problem is: Given $f \in C(X)$, to find a parameter $A^* \in P$ for which $e(A) = || f - F(A, \cdot)$ attains its infimum $\rho(f)$ over *P*. Such a parameter A^* is called best. We study the existence of a best parameter.

A special case of interest is that with $\sigma(x) = x$, that is, approximation by rational functions. Some aspects of this case were recently studied by Dolganov [2], who raised the question of existence. The case of approximation by ratios of power polynomials has been studied by Walsh [5, p. 351].

If $Q(A, x) \neq 0$, $R(\alpha A, x) = R(A, x)$ for all $\alpha \neq 0$. There is therefore no loss of generality in requiring that rational functions $R(A, \cdot)$ be normalized so that

$$\sum_{k=1}^{m} \exists a_{n-k} = 1.$$
 (1)

Let \hat{P} be the set of all complex coefficient vectors $A = (a_1, ..., a_{n+m})$ satisfying (1).

We need a convention for defining approximations $F(A, \cdot)$ where the denominator $Q(A, \cdot)$ vanishes. We will adapt one due to Boehm [1, 4, p. 84].

DEFINITION. Q has the *dense nonzero property* if for all $Q(A, \cdot) \neq 0$, the set of points at which $Q(A, \cdot)$ does not vanish is dense in X.

If Q has the dense nonzero property we can define F(A, x) if Q(A, x) = 0. Let Q(A, x) = 0 and define

$$\theta = \limsup_{y \to x} \arg(\sigma(R(A, y))) \qquad Q(A, y) \neq 0,$$

$$r = \limsup_{x \to y} |\sigma(R(A, y))| \qquad Q(A, y) \neq 0, \quad \arg(\sigma(R(A, y))) \to \theta,$$

$$F(A, x) := re^{i\theta}.$$

THEOREM. Let Q have the dense nonzero property and P be a nonempty closed subset of \hat{P} . Let $\sigma(t) \to \infty$ as $t \to \infty$. There exists a best parameter from \mathscr{P} for each $f \in C(X)$.

Proof. Let $e(A^k)$ be a decreasing sequence with limit $\rho(f) < \infty$. We can assume without loss of generality that $||f - F(A^1, \cdot)|| < \infty$. If $||F(A, \cdot) - F(A^1, \cdot)|| > 2 ||f - F(A^1, \cdot)||$ then by the triangle inequality

$$||f - F(A, \cdot)|| > ||f - F(A^1, \cdot)||$$
.

It follows that $\{||F(A^k, \cdot)|\}$ is a bounded sequence and hence $\{||R(A^k, \cdot)|\}$ is a bounded sequence. But

$$|| R(A, x)| = || P(A, x)|/| Q(A, x)| \ge || P(A, x)|/\sum_{k=1}^{m} || \psi_k ||.$$

Hence {{ $|P(A^k, \cdot)|}$ } is a bounded sequence. It follows by standard arguments [3, p. 25] that the numerator coefficients of { A^k } are bounded and the denominator coefficients are bounded by normalization (1). Hence { A^k } is a bounded sequence and has an accumulation point A, assume without loss of generality that { A^k } $\rightarrow A$. If $Q(A, x) \neq 0$, $F(A^k, x) \rightarrow F(A, x)$ and

$$|f(x) - F(A, x)| = \lim_{k \to \infty} |f(x) - F(A^k, x)| \leq \rho(f).$$

If Q(A, x) = 0

$$|f(x) - F(A, x)| \leq \limsup_{y \to x} |f(y) - \mathscr{F}(A, y)| \leq \rho(f) \qquad Q(A, y) \neq 0.$$

Hence $|f - F(A, \cdot)| \leq \rho(f)$.

640/20/3-4

EXAMPLES OF CLOSED SETS OF COEFFICIENTS

- 1. \hat{P} is a closed nonempty set.
- 2. Let K be a closed subset of the complex plane, then

$$P_r = \{A : A \in \mathcal{P}, \mathcal{Q}(A, x) \in K \text{ for all } x \in X\}$$

is a closed subset of \hat{P} . A case of particular interest is

$$K = \{z : \mu \leqslant \arg(z) \leqslant \nu\}.$$

3. Let $u \in C(X)$ and

$$P_s = \{A : \operatorname{Re}(F(A, x)) \geqslant \operatorname{Re}(u(x)), x \in X, A \in \hat{P}\}.$$

In the case where Q has the dense nonzero property, P_s is closed.

4. Let $Y = \{y_1, ..., y_s\}$ be a finite subset of X and $w_1, ..., w_s$ be given complex numbers. Let

$$P_i = \{A : A \in P, F(A, y_i) = w_i, i = 1, ..., s\}.$$

In the case m = 1 (transformed linear approximation) P_t is closed. If m > 1, P_t may not be closed and a best approximation may not exist as shown by the next example.

EXAMPLE. Let X = [0, 1] and $F(A, x) = a_1/(a_2 + a_3x)$. Let $Y = \{y_1\} = \{0\}$ and $w_1 = 1$. Let $f(x) = T_2^*(x) = 8x^2 - 8x + 1$. We claim first that for $A \in P_i$, e(A) > 1. Suppose this is false then there is \hat{A} such that $e(\hat{A}) \leq 1$. If $\hat{a}_1 = 0$, then by Boehm's convention $R(\hat{A}, 0) = 0$, so $\hat{a}_1 \neq 0$. We can, therefore, reparametrize $R(\hat{A}, x)$ as $1/(1 + \alpha x)$. Now if $e(A) \leq 1$, then

$$\operatorname{Re}(1/(1 + \alpha/2)) \leq 0$$
, $\operatorname{Re}(1/(1 + \alpha)) \geq 0$;

hence

$$\operatorname{Re}(1+\alpha/2) \leq 0, \qquad \operatorname{Re}(1+\alpha) \geq 0,$$

which is impossible. We next observe that if we set

$$A^{k} = (1/k, 1/k, (k - 1)/k)$$
 then $e(A^{k}) \rightarrow 1$.

Admissible Approximation

Dolganov defines a rational function $R(A, \cdot)$ to be *admissible* if $\operatorname{Re}(Q(A, \cdot)) > 0$. Even in very simple cases, a best admissible approximation need not exist.

EXAMPLE. Let $X = [-1, -\frac{1}{2}] \cap [\frac{1}{2}, 1]$ and $F(A, x) = a_1/(a_2 + a_3x)$. Let f(x) = 1/(ix) then

$$|(ix)^{-1} - (k^{-1} - ((k-1)/k) ix)^{-1}| \to 0$$
 uniformly on X,

and $\rho(f) = 0$. There is no admissible $F(A, \cdot)$ with $||f - F(A, \cdot)|| = 0$.

Even when X is a real interval and F is a ratio of power polynomials, a best admissible approximation need not exist.

EXAMPLE. Let X = [0, 1] and $F(A, x) = a_1/(a_2 + a_3x + a_4x^2)$. Let

$$f(x) = [x(1 - x) + i(1 - 2x^2)]^{-1}$$

then

$$f(x) - [k^{-1} + x(1 - x) + i(1 - 2x^2)]^{-1} \rightarrow 0$$

uniformly on X, and $\rho(f) = 0$. But since the denominator of f is i at 0 and -i at 1, f is not expressible as an admissible rational.

REAL APPROXIMATION

Consider the case in which all basis functions are real, all coefficients are real, σ is a continuous mapping of the real line into the extended real line, and f is real. This is the case of real Chebyshev approximation by transformed rational functions. A special case is where $\sigma(x) = x$, which has already been studied by Boehm [1]. The existence theorem obtained earlier in this paper applies. Some cases of closed parameter spaces P are given in [6].

REFERENCES

- 1. B. W. BOEHM, Existence of best rational Tchebycheff approximations, *Pacific J. Math.* **15** (1965), 19–28.
- 2. R. L. DOLGANOV, The approximation of continuous complex-valued functions by generalized rational functions, *Siberian Math. J.* 11 (1970), 932-942.
- J. R. RICE, "The Approximation of Functions," Vol. 1, Addison-Wesley, Reading, Mass., 1964.
- 4. J. R. RICE, "The Approximation of Functions," Vol. 2, Addison-Wesley, Reading, Mass., 1969.
- 5. J. L. WALSH, "Interpolation and Approximation in the Complex Domain," American Mathematical Society, Providence, R.I., 1960.
- 6. C. B. DUNHAM, Mean approximation by transformed and constrained rational functions, J. Approximation Theory 10 (1974), 93-100.