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Let X be a compact topological space. Let C(X) be the space of continuous
complex functions on X. For g a complex function on X define

'

C gl osuplgx)ltxe X

Let {¢y ... .}, {¢fy .o P+ be linearly independent subsets of C(X) and
define

" e

R(A. x) = P(A. x)/Q(A. x) - ) a/.¢/.-(‘\~)/’/2 dy Py,
Lol Ao
Let o be a continuous mapping of the complex plane into the extended
complex plane and define

F(A. x) - o(R(A. x)).

Let P be a subset of complex (# -+ m)-space. The approximation problem is:
Given fe C(X), to find a parameter 4%« P for which e(A4) = | f— F(A4, )
attains its infimum p(f) over P. Such a parameter 4* is called best. We study
the existence of a best parameter.

A special case of interest is that with o(x) - x, that is, approximation by
rational functions. Some aspects of this case were recently studied by
Dolganov [2], who raised the question of existence. The case of approxima-
tion by ratios of power polynomials has been studied by Walsh [5, p. 351].

If Q(A. x) + 0, R(xA, x) = R(A, x) for all x -/ 0. There is therefore no
loss of generality in requiring that rational functions R(A. -) be normalized
so that

Z a, I (1
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TRANSFORMED RATIONAL APPROXIMATIONS 285

Let P be the set of all complex coefficient vectors 4 = (a ..., a, .,,) satis-
fying (1).

We need a convention for defining approximations F(A, ) where the
denominator Q(A, ) vanishes. We will adapt one due to Boehm [1, 4, p. 84].

DerinNITION.  Q has the dense nonzero property if for all Q(A4, -) -+ 0, the
set of points at which Q(4, -) does not vanish is dense in X.

If O has the dense nonzero property we can define F(4, x) if Q(4, x) = 0.
Let Q(A, x) = 0 and define

0 = lim sup arg(o(R(A4. y)) Q4. y) * 0,
re= limsup [ o(R(4. 1) Q(A, y) # 0, arg(o(R(A, 1)) — 0,

F(A. x) == re.

THEOREM. Let Q have the dense nonzero property and P be a nonempty
closed subset of P. Let o(t) — co as t — oo. There exists a best parameter
from 2 for each fe C(X).

Proof. Let e(A*) be a decreasing sequence with limit p(f) < c0. We can
assume without loss of generality that || f— F(A4Y, -)| < oo. If | F(4, ) —
F(AY, )1 > 21 f — F(AL, -)! then by the triangle inequality

= FA ) > — F(AL )

It follows that {jj F(4*, -)} is a bounded sequence and hence {|| R(A4%, -).} is a
bounded sequence. But

m
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r=1

Hence {| P(A*, -)|'} is a bounded sequence. It follows by standard arguments
[3, p. 25] that the numerator coefficients of {4*} are bounded and the deno-
minator coeflicients are bounded by normalization (1). Hence {4*} is a
bounded sequence and has an accumulation point A, assume without loss of
generality that {4%} — 4. If Q(4, x) £ 0, F(A*, x) — F(A4, x) and

[flx) = F(4, 9| = lim | flx) - F(A% X)) = p(f).
If O(A, x) == 0
) = FA, 0 s limosup [ f(y) — F(A4,0) < p(f) 004, )) A 0.
Hence | f— F(A, ) << p(f).
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ExaMPLES OF CLOSED SETS OF COEFFICIENTS

1. Pis a closed nonempty set.
2. Let K be a closed subset of the complex plane, then
P, —{A:AeP, Q(A, x)e K for all xe X!
is a closed subset of P. A case of particular interest is
K= {zop oD arg(z) vl
3. LetwueC(X)and
P. ={A4 : Re(F(4, x)) > Re(u(x)), xc X, A  P\.
In the case where Q has the dense nonzero property, P, is closed.

4. Let Y = {y ..., be a finite subset of X and w, ,...,, w, be given
complex numbers. Let

Pi- {A:Ac P F(A,y,) = wi i~ 1. 5.

In the case m = | (transformed linear approximation) P, is closed. If
m > 1, P, may not be closed and a best approximation may not exist as
shown by the next example.

ExamMpPLE. Let X -- [0, 1] and F(A, x) — a,/(a, - asx). Let ¥ - {y)
{0} and wy — 1. Let f(x) = Ty*(x) -= 8x% ~ 8x -+ 1. We claim first that for
A€ P,, e(A) > 1. Suppose this is false then there is A such that e(4) = 1. 1f
4, = 0, then by Boehm’s convention R(4,0) = 0, so d, #0. We can,
therefore, reparametrize R(A4, x) as 1/(1 ;- xx). Now if ¢(4) < 1, then

Re(1/(1 - x/2)) <7 0, Re(1/(1 ¢ ~)) = 0:
hence
Re(l - «/2) =20, Re(l - x) == 0,

which is impossible. We next observe that if we set

A = (1jk, 1k, (k — 1)/k) then e(A") — 1.

ADMISSIBLE APPROXIMATION

Dolganov defines a rational function R(A4, -) to be admissible it
Re(Q(A4, *)) >> 0. Even in very simple cases, a best admissible approximation
need not exist.
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ExampLE. Let X = [—1, =31 [4, 1] and F(4, x) = a,/(a, + a;x). Let
f(x) = 1{(ix) then

(ix)y™L = (k1 - (¢k — D/k)ix)"t | — O uniformly on X,

and p(f) - 0. There is no admissible F(A, -) with | /' — F(4, -)| = 0.
Even when X is a real interval and F is a ratio of power polynomials, a
best admissible approximation need not exist.

Exampre. Let X == [0, 1] and F(A, x) = a;/{as — azx -+ a,x*).
Let

f(x) = [x(1 - x) -~ (1 — 2xH)]?
then
) = [t x(1 = x) i — 23] | 0

uniformly on X, and p(f) == 0. But since the denominator of fis 7 at 0 and
—i at 1, f'is not expressible as an admissible rational.

REAL APPROXIMATION

Consider the case in which all basis functions are real, all coefficients are
real, o is a continuous mapping of the real line into the extended real line, and
fis real. This is the case of real Chebyshev approximation by transformed
rational functions. A special case is where o(x) = x, which has already been
studied by Boehm [1]. The existence theorem obtained earlier in this paper
applies. Some cases of closed parameter spaces P are given in [6].
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